Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Arch Virol ; 168(4): 124, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2271114

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Humans , Animals , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccines, DNA/genetics , Ferrets , Virus Shedding , Antibodies, Viral , Antibodies, Neutralizing , DNA , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
2.
Arch Microbiol ; 205(4): 150, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2250864

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has infected 673,010,496 patients and caused the death of 6,854,959 cases globally until today. Enormous efforts have been made to develop fundamentally different COVID-19 vaccine platforms. Nucleic acid-based vaccines consisting of mRNA and DNA vaccines (third-generation vaccines) have been promising in terms of rapid and convenient production and efficient provocation of immune responses against the COVID-19. Several DNA-based (ZyCoV-D, INO-4800, AG0302-COVID19, and GX-19N) and mRNA-based (BNT162b2, mRNA-1273, and ARCoV) approved vaccine platforms have been utilized for the COVID-19 prevention. mRNA vaccines are at the forefront of all platforms for COVID-19 prevention. However, these vaccines have lower stability, while DNA vaccines are needed with higher doses to stimulate the immune responses. Intracellular delivery of nucleic acid-based vaccines and their adverse events needs further research. Considering re-emergence of the COVID-19 variants of concern, vaccine reassessment and the development of polyvalent vaccines, or pan-coronavirus strategies, is essential for effective infection prevention.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Vaccines, DNA/genetics , Nucleic Acid-Based Vaccines , COVID-19 Vaccines/genetics , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2/genetics , RNA, Messenger
3.
Viruses ; 15(3)2023 02 24.
Article in English | MEDLINE | ID: covidwho-2248637

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic, with over 673 million infections and 6.85 million deaths globally. Novel mRNA and viral-vectored vaccines were developed and licensed for global immunizations under emergency approval. They have demonstrated good safety and high protective efficacy against the SARS-CoV-2 Wuhan strain. However, the emergence of highly infectious and transmissible variants of concern (VOCs) such as Omicron was associated with considerable reductions in the protective efficacy of the current vaccines. The development of next-generation vaccines that could confer broad protection against both the SARS-CoV-2 Wuhan strain and VOCs is urgently needed. A bivalent mRNA vaccine encoding the Spike proteins of both the SARS-CoV-2 Wuhan strain and the Omicron variant has been constructed and approved by the US FDA. However, mRNA vaccines are associated with instability and require an extremely low temperature (-80 °C) for storage and transportation. They also require complex synthesis and multiple chromatographic purifications. Peptide-based next-generation vaccines could be developed by relying on in silico predictions to identify peptides specifying highly conserved B, CD4+ and CD8+ T cell epitopes to elicit broad and long-lasting immune protection. These epitopes were validated in animal models and in early phase clinical trials to demonstrate immunogenicity and safety. Next-generation peptide vaccine formulations could be developed to incorporate only naked peptides, but they are costly to synthesize and production would generate extensive chemical waste. Continual production of recombinant peptides specifying immunogenic B and T cell epitopes could be achieved in hosts such as E. coli or yeast. However, recombinant protein/peptide vaccines require purification before administration. The DNA vaccine might serve as the most effective next-generation vaccine for low-income countries, since it does not require an extremely low temperature for storage or need extensive chromatographic purification. The construction of recombinant plasmids carrying genes specifying highly conserved B and T cell epitopes meant that vaccine candidates representing highly conserved antigenic regions could be rapidly developed. Poor immunogenicity of DNA vaccines could be overcome by the incorporation of chemical or molecular adjuvants and the development of nanoparticles for effective delivery.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Epitopes, T-Lymphocyte/genetics , Escherichia coli , Pandemics/prevention & control , Vaccines, DNA/genetics , Viral Vaccines/genetics , Vaccines, Combined
4.
Bull Exp Biol Med ; 174(2): 246-249, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2174485

ABSTRACT

During the COVID-19 pandemic, the development of prophylactic vaccines, including those based on new platforms, became highly relevant. One such platform is the creation of vaccines combining DNA and protein components in one construct. For the creation of DNA vaccine, we chose the full-length spike protein (S) of the SARS-CoV-2 virus and used the recombinant receptor-binding domain (RBD) of the S protein produced in CHO-K1 cells as a protein component. The immunogenicity of the developed combined vaccine and its individual components was compared and the contribution of each component to the induction of the immune response was analyzed. The combined DNA/protein vaccine possesses the advantages of both underlying approaches and is capable of inducing both humoral (similar to subunit vaccines) and cellular (similar to DNA vaccines) immunity.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Pandemics , Vaccines, DNA/genetics , Vaccines, Combined , DNA , Antibodies, Viral
5.
Vaccine ; 41(6): 1223-1231, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2165936

ABSTRACT

After severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) made the world tremble with a global pandemic, SARS-CoV2 vaccines were developed. However, due to the coronavirus's intrinsic nature, new variants emerged, such as Delta and Omicron, refractory to the vaccines derived using the original Wuhan strain. We developed an HERV-enveloped recombinant baculoviral DNA vaccine against SARS-CoV2 (AcHERV-COVID19S). A non-replicating recombinant baculovirus that delivers the SARS-CoV2 spike gene showed a protective effect against the homologous challenge in a K18-hACE2 Tg mice model; however, it offered only a 50 % survival rate against the SARS-CoV2 Delta variant. Therefore, we further developed the AcHERV-COVID19 Delta vaccine (AcHERV-COVID19D). The AcHERV-COVID19D induced higher neutralizing antibodies against the Delta variant than the prototype or Omicron variant. On the other hand, cellular immunity was similarly high for all three SARS-CoV2 viruses. Cross-protection experiments revealed that mice vaccinated with the AcHERV-COVID19D showed 100 % survival upon challenge with Delta and Omicron variants and 71.4 % survival against prototype SARS-CoV2. These results support the potential of the viral vector vaccine, AcHERV-COVID19D, in preventing the spread of coronavirus variants such as Omicron and SARS-CoV2 variants.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Mice , Animals , Humans , COVID-19 Vaccines , SARS-CoV-2 , Mice, Transgenic , Angiotensin-Converting Enzyme 2 , Vaccines, DNA/genetics , RNA, Viral , COVID-19/prevention & control , DNA , Viral Vaccines/genetics , Antibodies, Neutralizing , Baculoviridae/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
6.
Sci Rep ; 12(1): 20923, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2151088

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine. However, emerging SARS-CoV-2 variants of concern (VOCs), such as the delta variant, have escaped mutations against vaccine-induced neutralizing antibodies. This suggests that modified vaccines accommodating VOCs need to be developed promptly. Here, we first modified the current DNA vaccine to enhance antigenicity. Compared with the parental DNA vaccine, the modified version (GP∆-DNA vaccine) induced rapid antibody production. Next, we updated the GP∆-DNA vaccine to spike glycoprotein of the delta variant (GP∆-delta DNA vaccine) and compared the efficacy of different injection routes, namely intramuscular injection using a needle and syringe and intradermal injection using a pyro-drive jet injector (PJI). We found that the levels of neutralizing antibodies induced by the intradermal PJI injection were higher than intramuscular injection. Furthermore, the PJI-injected GP∆-delta DNA vaccine effectively protected human angiotensin-converting enzyme 2 (hACE2) knock-in mice from delta-variant infection. These results indicate that the improved DNA vaccine was effective against emerging VOCs and was a potential DNA vaccine platform for future VOCs or global pandemics.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Animals , Mice , SARS-CoV-2/genetics , Immunity, Humoral , Vaccines, DNA/genetics , COVID-19/prevention & control , Antibodies, Neutralizing
7.
EMBO Mol Med ; 14(10): e15821, 2022 10 10.
Article in English | MEDLINE | ID: covidwho-2067354

ABSTRACT

New variants in the SARS-CoV-2 pandemic are more contagious (Alpha/Delta), evade neutralizing antibodies (Beta), or both (Omicron). This poses a challenge in vaccine development according to WHO. We designed a more universal SARS-CoV-2 DNA vaccine containing receptor-binding domain loops from the huCoV-19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins. The vaccine induced spike antibodies crossreactive between huCoV-19/WH01, Beta, and Delta spike proteins that neutralized huCoV-19/WH01, Beta, Delta, and Omicron virus in vitro. The vaccine primed nucleoprotein-specific T cells, unlike spike-specific T cells, recognized Bat-CoV sequences. The vaccine protected mice carrying the human ACE2 receptor against lethal infection with the SARS-CoV-2 Beta variant. Interestingly, priming of cross-reactive nucleoprotein-specific T cells alone was 60% protective, verifying observations from humans that T cells protect against lethal disease. This SARS-CoV vaccine induces a uniquely broad and functional immunity that adds to currently used vaccines.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccines, DNA/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Vaccines/genetics
8.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1861028

ABSTRACT

In vivo nucleic expression technologies using DNA or mRNA offer several advantages for recombinant gene expression. Their inherent ability to generate natively expressed recombinant proteins and antigens allows these technologies to mimic foreign gene expression without infection. Furthermore, foreign nucleic acid fragments have an inherent ability to act as natural immune adjuvants and stimulate innate pathogen- and DNA damage-associated receptors that are responsible for activating pathogen-associated molecular pattern (PAMP) and DNA damage-associated molecular pattern (DAMP) signalling pathways. This makes nucleic-acid-based expression technologies attractive for a wide range of vaccine and oncolytic immunotherapeutic uses. Recently, RNA vaccines have demonstrated their efficacy in generating strong humoral and cellular immune responses for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). DNA vaccines, which are more stable and easier to manufacture, generate similar immune responses to RNA, but typically exhibit lower immunogenicity. Here we report on a novel method of constructing self-amplifying DNA expression vectors that have the potential to amplify and enhance gene/antigen expression at a cellular level by increasing per cell gene copy numbers, boost genomic adjuvating effects and mitigate through replication many of the problems faced by non-replicating vectors such as degradation, methylation and gene silencing. These vectors employ a viral origin rolling circle replication cycle in mammalian host cells that amplifies the vector and gene of interest (GOI) copy number, maintaining themselves as nuclear episomes. We show that these vectors maintain persistently elevated GOI expression levels at the cellular level and induce morphological cellular alterations synonymous with increased cellular stress.


Subject(s)
COVID-19 , Circovirus , Vaccines, DNA , Animals , Circovirus/genetics , Genetic Vectors/genetics , Mammals , SARS-CoV-2 , Vaccines, DNA/genetics
9.
Viruses ; 14(5)2022 05 15.
Article in English | MEDLINE | ID: covidwho-1855823

ABSTRACT

Despite the existence of various types of vaccines and the involvement of the world's leading pharmaceutical companies, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains the most challenging health threat in this century. Along with the increased transmissibility, new strains continue to emerge leading to the need for more vaccines that would elicit protectiveness and safety against the new strains of the virus. Nucleic acid vaccines seem to be the most effective approach in case of a sudden outbreak of infection or the emergence of a new strain as it requires less time than any conventional vaccine development. Hence, in the current study, a DNA vaccine encoding the trimeric prefusion-stabilized ectodomain (S1+S2) of SARS-CoV-2 S-protein was designed by introducing six additional prolines mutation, termed HexaPro. The three-dose regimen of designed DNA vaccine immunization in mice demonstrated the generation of protective antibodies.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , COVID-19/prevention & control , Mice , SARS-CoV-2/genetics , Vaccination , Vaccines, DNA/genetics
10.
J Immunol ; 208(6): 1396-1405, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1818327

ABSTRACT

To develop a safe and effective nanoparticle (NP) multiepitope DNA vaccine for controlling infectious bronchitis virus (IBV) infection, we inserted the multiepitope gene expression box SBNT into a eukaryotic expression vector pcDNA3.1(+) to construct a recombinant plasmid pcDNA/SBNT. The NP multiepitope DNA vaccine pcDNA/SBNT-NPs were prepared using chitosan to encapsulate the recombinant plasmid pcDNA/SBNT, with a high encapsulation efficiency of 94.90 ± 1.35%. These spherical pcDNA/SBNT-NPs were 140.9 ± 73.2 nm in diameter, with a mean ζ potential of +16.8 ± 4.3 mV. Our results showed that the chitosan NPs not only protected the plasmid DNA from DNase degradation but also mediated gene transfection in a slow-release manner. Immunization with pcDNA/SBNT-NPs induced a significant IBV-specific immune response and partially protected chickens against homologous IBV challenge. Therefore, the chitosan NPs could be a useful gene delivery system, and NP multiepitope DNA vaccines may be a potential alternative for use in the development of a novel, safe, and effective IBV vaccine.


Subject(s)
Chitosan , Coronavirus Infections , Infectious bronchitis virus , Nanoparticles , Vaccines, DNA , Viral Vaccines , Animals , Chickens , Coronavirus Infections/prevention & control , Infectious bronchitis virus/genetics , Vaccines, DNA/genetics
11.
Proc Natl Acad Sci U S A ; 119(14): e2119093119, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1751830

ABSTRACT

SignificanceUsing SARS-CoV-2 as a relevant case study for infectious disease, we investigate the structure-function relationships that dictate antiviral spherical nucleic acid (SNA) vaccine efficacy. We show that the SNA architecture can be rapidly employed to target COVID-19 through incorporation of the receptor-binding domain, and that the resulting vaccine potently activates human cells in vitro and mice in vivo. Furthermore, when challenged with a lethal viral infection, only mice treated with the SNA vaccine survived. Taken together, this work underscores the importance of rational vaccine design for infectious disease to yield vaccines that elicit more potent immune responses to effectively fight disease.


Subject(s)
Communicable Disease Control , Nucleic Acids/immunology , Vaccines, DNA/immunology , Animals , Biotechnology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Diseases/etiology , Communicable Diseases/immunology , Humans , Nucleic Acids/chemistry , SARS-CoV-2/immunology , Vaccine Development , Vaccines, DNA/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology
12.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1708485

ABSTRACT

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Immunity, Humoral/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dextrans/chemistry , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermidine/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Vero Cells
13.
Front Immunol ; 12: 824728, 2021.
Article in English | MEDLINE | ID: covidwho-1686477

ABSTRACT

We generated an optimized COVID-19 vaccine candidate based on the modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, termed MVA-CoV2-S(3P). The S(3P) protein was expressed at higher levels (2-fold) than the non-stabilized S in cells infected with the corresponding recombinant MVA viruses. One single dose of MVA-CoV2-S(3P) induced higher IgG and neutralizing antibody titers against parental SARS-CoV-2 and variants of concern than MVA-CoV2-S in wild-type C57BL/6 and in transgenic K18-hACE2 mice. In immunized C57BL/6 mice, two doses of MVA-CoV2-S or MVA-CoV2-S(3P) induced similar levels of SARS-CoV-2-specific B- and T-cell immune responses. Remarkably, a single administration of MVA-CoV2-S(3P) protected all K18-hACE2 mice from morbidity and mortality caused by SARS-CoV-2 infection, reducing SARS-CoV-2 viral loads, histopathological lesions, and levels of pro-inflammatory cytokines in the lungs. These results demonstrated that expression of a novel full-length prefusion-stabilized SARS-CoV-2 S protein by the MVA poxvirus vector enhanced immunogenicity and efficacy against SARS-CoV-2 in animal models, further supporting MVA-CoV2-S(3P) as an optimized vaccine candidate for clinical trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/mortality , COVID-19 Vaccines/genetics , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Cytokines/analysis , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmids/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccine Efficacy , Vaccines, DNA/genetics , Vaccinia virus/immunology , Vero Cells , Viral Vaccines/genetics
14.
Biologicals ; 75: 12-15, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616379

ABSTRACT

BACKGROUND: The successful development of messenger RNA vaccines for SARS-CoV-2 opened up venues for clinical nucleotide-based vaccinations. For development of DNA vaccines, we tested whether the EGF domain peptide of Developmentally regulated endothelial locus1 (E3 peptide) enhances uptake of extracellularly applied plasmid DNA. METHODS: DNA plasmid encoding lacZ or GFP was applied with a conditioned culture medium containing E3 peptide to cell lines in vitro or mouse soleus muscles in vivo, respectively. After 48 h incubation, gene expression was examined by ß-galactosidase (ß-gal) assay and fluorescent microscope, respectively. RESULTS: Application of E3 peptide-containing medium to cultured cell lines induced intense ß-gal activity in a dose-dependent manner. Intra-gastrocnemius injection of E3 peptide-containing medium to mouse soleus muscle succeeded in the induction of GFP fluorescence in many cells around the injection site. CONCLUSIONS: The administration of E3 peptide facilitates transmembrane uptake of extracellular DNA plasmid which induces sufficient extrinsic gene expression.


Subject(s)
DNA/genetics , Epidermal Growth Factor/chemistry , Gene Expression , Peptides , Plasmids/genetics , Plasmids/metabolism , Protein Domains , Animals , COVID-19 Vaccines , Cell Membrane/metabolism , DNA/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Mice , Muscle, Skeletal , Vaccines, DNA/genetics , Vaccines, DNA/metabolism
15.
EBioMedicine ; 75: 103762, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587929

ABSTRACT

BACKGROUND: Vaccines in emergency use are efficacious against COVID-19, yet vaccine-induced prevention against nasal SARS-CoV-2 infection remains suboptimal. METHODS: Since mucosal immunity is critical for nasal prevention, we investigated the efficacy of an intramuscular PD1-based receptor-binding domain (RBD) DNA vaccine (PD1-RBD-DNA) and intranasal live attenuated influenza-based vaccines (LAIV-CA4-RBD and LAIV-HK68-RBD) against SARS-CoV-2. FINDINGS: Substantially higher systemic and mucosal immune responses, including bronchoalveolar lavage IgA/IgG and lung polyfunctional memory CD8 T cells, were induced by the heterologous PD1-RBD-DNA/LAIV-HK68-RBD as compared with other regimens. When vaccinated animals were challenged at the memory phase, prevention of robust SARS-CoV-2 infection in nasal turbinate was achieved primarily by the heterologous regimen besides consistent protection in lungs. The regimen-induced antibodies cross-neutralized variants of concerns. Furthermore, LAIV-CA4-RBD could boost the BioNTech vaccine for improved mucosal immunity. INTERPRETATION: Our results demonstrated that intranasal influenza-based boost vaccination induces mucosal and systemic immunity for effective SARS-CoV-2 prevention in both upper and lower respiratory systems. FUNDING: This study was supported by the Research Grants Council Collaborative Research Fund, General Research Fund and Health and Medical Research Fund in Hong Kong; Outbreak Response to Novel Coronavirus (COVID-19) by the Coalition for Epidemic Preparedness Innovations; Shenzhen Science and Technology Program and matching fund from Shenzhen Immuno Cure BioTech Limited; the Health@InnoHK, Innovation and Technology Commission of Hong Kong; National Program on Key Research Project of China; donations from the Friends of Hope Education Fund; the Theme-Based Research Scheme.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Immunization, Secondary , Influenza Vaccines , SARS-CoV-2 , Vaccines, DNA , Administration, Intranasal , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , Dogs , Female , HEK293 Cells , Humans , Immunity, Mucosal , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vero Cells
16.
Nat Commun ; 12(1): 6871, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537309

ABSTRACT

Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Mucosal , Immunization, Secondary/methods , SARS-CoV-2/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Genetic Vectors , Immunization Schedule , Immunogenicity, Vaccine , Memory T Cells/immunology , Mice , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
17.
Vaccine ; 39(49): 7175-7181, 2021 12 03.
Article in English | MEDLINE | ID: covidwho-1508202

ABSTRACT

The development of new, low-cost vaccines and effective gene therapies requires accurate delivery and high-level expression of candidate genes. We developed a plasmid vector, pIDV-II, that allows for both easy manipulation and high expression of exogenous genes in mammalian cells. This plasmid is based upon the pVax1 plasmid and shares a common structure with typical mammalian transcription units. It is composed of a chicken ß-actin promoter (CAG), followed by an intron and flanked by two restriction sites, and also includes a post-transcriptional regulatory element, followed by a transcriptional termination signal. While the modification of pVax1 elements either decreased eGFP expression levels or had no effect at all, replacement of the promoter, the poly-A signal, deletion of the T7 and AmpR promoters, and inversion of the ORI-Neo/Kan cassette, significantly increased in vitro eGFP expression with the modified plasmid called pIDV-II. To further evaluate our vector, expression levels of three viral antigens were compared in cell lines transfected either with pVax1 or pCAGGS backbones as controls. Higher transgene expression was consistently observed with pIDV-II. The humoral and cellular responses generated in mice immunized with pIDV-II vs pVax1 expressing each viral antigen individually were superior by 2-fold or more as measured by ELISA and ELISPOT assays. Overall these results indicate that pIDV-II induces robust transgene expression, with concomitant improved cellular and humoral immune responses against the transgene of interest over pVax1. The new vector, pIDV-II, offers an additional alternative for DNA based vaccination and gene therapy for animal and human use.


Subject(s)
Vaccines, DNA , Animals , DNA , Immunity, Humoral , Mice , Mice, Inbred BALB C , Transgenes , Vaccines, DNA/genetics
18.
Sci Adv ; 7(45): eabj0611, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1515256

ABSTRACT

This work reports a suction-based cutaneous delivery method for in vivo DNA transfection. Following intradermal Mantoux injection of plasmid DNA in a rat model, a moderate negative pressure is applied to the injection site, a technique similar to Chinese báguàn and Middle Eastern hijama cupping therapies. Strong GFP expression was demonstrated with pEGFP-N1 plasmids where fluorescence was observed as early as 1 hour after dosing. Modeling indicates a strong correlation between focal strain/stress and expression patterns. The absence of visible and/or histological tissue injury contrasts with current in vivo transfection systems such as electroporation. Specific utility was demonstrated with a synthetic SARS-CoV-2 DNA vaccine, which generated host humoral immune response in rats with notable antibody production. This method enables an easy-to-use, cost-effective, and highly scalable platform for both laboratorial transfection needs and clinical applications for nucleic acid­based therapeutics and vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , DNA , SARS-CoV-2 , Skin/immunology , Transfection , Vaccines, DNA , Administration, Cutaneous , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , DNA/genetics , DNA/immunology , DNA/pharmacology , Male , Rats , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Suction , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
19.
Bioelectrochemistry ; 144: 107994, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1499650

ABSTRACT

Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.


Subject(s)
Electroporation , Gene Transfer Techniques , Genetic Therapy , Animals , COVID-19/prevention & control , Electroporation/instrumentation , Electroporation/methods , Equipment Design , Gene Transfer Techniques/instrumentation , Genetic Therapy/methods , Humans , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/therapeutic use , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/administration & dosage , mRNA Vaccines/genetics , mRNA Vaccines/therapeutic use
20.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: covidwho-1475573

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other pathogens with pandemic potential requires safe, protective, inexpensive, and easily accessible vaccines that can be developed and manufactured rapidly at a large scale. DNA vaccines can achieve these criteria, but induction of strong immune responses has often required bulky, expensive electroporation devices. Here, we report an ultra-low-cost (<1 USD), handheld (<50 g) electroporation system utilizing a microneedle electrode array ("ePatch") for DNA vaccination against SARS-CoV-2. The low cost and small size are achieved by combining a thumb-operated piezoelectric pulser derived from a common household stove lighter that emits microsecond, bipolar, oscillatory electric pulses and a microneedle electrode array that targets delivery of high electric field strength pulses to the skin's epidermis. Antibody responses against SARS-CoV-2 induced by this electroporation system in mice were strong and enabled at least 10-fold dose sparing compared to conventional intramuscular or intradermal injection of the DNA vaccine. Vaccination was well tolerated with mild, transient effects on the skin. This ePatch system is easily portable, without any battery or other power source supply, offering an attractive, inexpensive approach for rapid and accessible DNA vaccination to combat COVID-19, as well as other epidemics.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Electroporation/instrumentation , SARS-CoV-2 , Vaccines, DNA/administration & dosage , Animals , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Costs and Cost Analysis , Electroporation/economics , Electroporation/methods , Equipment Design , Female , Genes, Reporter , Humans , Mice , Mice, Inbred BALB C , Microelectrodes , Needles , Pandemics/prevention & control , Proof of Concept Study , Rats , Rats, Wistar , Skin/immunology , Skin/metabolism , Transfection , Vaccination/economics , Vaccination/instrumentation , Vaccination/methods , Vaccines, DNA/genetics , Vaccines, DNA/immunology
SELECTION OF CITATIONS
SEARCH DETAIL